

ISSN: 3078-2724 Volume 1: Issue 2

AI in Manufacturing Quality Management: A Review of Techniques, Tools, and Industrial Adoption

Muhammad Mohsin Kabeer^{1*}

^{1, 2} Project Management Institution (PMI), United States of America, American Purchasing Society (APS) United States of America

¹Mohsinkabeer86@gmail.com

Article History

Submitted: 16-11-2024

Revised: 07-12-2024

Accepted: 11-12-2024

Corresponding Author

Muhammad Mohsin Kabeer

Email:

Mohsinkabeer86@gm ail.com

Abstract

It is true that Artificial Intelligence (AI) is fast transforming the quality management of manufacturing services by providing smarter, data-driven solutions to detect defects in manufacturing processes, optimize processes and provide predictive maintenance. Conventional approaches to quality assurance are easily surpassed by complex data and dynamic production contexts, whereas AI-based technologies, including machine learning, deep learning, computer vision, and reinforcement learning, demonstrate increased accuracy, scale and flexibility. This review discusses the principles of AI in quality management, its major technologies, tools, and implementation in Industry 4.0 ecosystems. It also emphasizes industry adoption in the automotive, electronic, pharmaceutical and aerospace sectors and discusses the issues of data quality, implementation cost, employee preparation and readiness and interpretability. The trends of the future focus on explainable AI, sustainable manufacturing and human-AI cooperation. In contemporary manufacturing AI is offering radical possibilities of attaining better quality management that is efficient, reliable, and sustainable.

Key words

Artificial Intelligence, Quality Management, Manufacturing, Machine Learning, Deep Learning, Computer Vision, Industry 4.0, Predictive Maintenance, Digital Twins

Introduction

Quality management has been a key aspect of the manufacturing process, to make sure the products are of good quality and were produced as per the expectations of the customers, as well as they are of good quality which is required by the standards and the costs incurred by the manufacturer due to the defects or recalls are minimized [1]. Quality assurance (QA) and quality control (QC) in the

ISSN: 3078-2724 Volume 1: Issue 2

manufacturing industry has traditionally been based on human inspection, statistical process control, and automation based on rules. Although these techniques have been used in industry over decades, they usually have limitations associated with subjectivity during human inspection, complex data, and the inability to adapt rapidly to the dynamic production conditions [2]. With the increased globalization and competition in the manufacturing process, demands towards more specific, efficient and flexible quality management solutions have increased [3].

The recent development of Artificial Intelligence (AI) has created the possibility of revolutionizing the quality management of manufacturing in the recent years. The AI technologies (and especially machine learning, deep learning, and computer vision) offer the capacity to process large amounts of data, identify trends that are not recognizable by conventional algorithms, and make real-time solutions [4]. Such features can be particularly useful in the contemporary smart factories, where linked machines and sensors produce immense volumes of production information that can be used to create predictive pieces of information and to deploy automated quality control [5].

The application of AI in quality management in manufacturing does not just involve detection of defects. It allows predictive quality control, in which possible problems may be detected and fixed to ensure that they do not impact production [6]. Computer vision systems have the capacity to perform continuous high-resolution inspection faster and more accurately than human inspection. Machine learning models have the ability to optimize the production parameters to ensure variation is minimized and scrap is reduced. Also, AI-driven digital twins (simulated versions of real-world manufacturing processes) enable manufacturers to simulate, monitor, and enhance quality in a real-time manner [7].

The use of AI in conjunction with the Industry 4.0 solutions like the Internet of things (IoT), robotics, and cloud computing further boosts the utilization of smart quality management systems. Applications in AI-driven solutions are already being implemented in companies in the automotive, aerospace, electronics, and pharmaceutical industries with the aim of enhancing productivity, facilitating compliance, and minimizing operational risks [8]. Although this seems like a promise, AI has not been adopted in the management of quality without challenges. The implementation cost is high, data integrity and availability, and the requirement of skilled staff are

ISSN: 3078-2724 Volume 1: Issue 2

also a major obstacle. In addition, the interpretability and reliability of AI-inspired decisions are a continuous issue, especially in the most regulated sectors [9]. This review considers the modern state of AI in manufacturing quality management, the methods, tools, and application in the industry influencing this area. The article offers valuable information about the way AI is changing quality management and what the future may bring to its further adoption in the manufacturing world by reviewing the advantages and shortcomings [10].

Deep roots of AI in Quality Management

The use of the Artificial Intelligence (AI) in the quality management of manufacturing is founded on the intersection of data-driven decision-making, sophisticated algorithms, and intelligent factory ecosystems. In its simplest form, AI allows machines and systems to learn data, identify patterns, and make independent or semi-autonomous decisions in order to increase the reliability and accuracy of the manufacturing operation [11]. The background of AI in this respect presupposes a reflection on the main technologies, the use of data, and the compatibility of AI and the principles of Industry 4.0.

PROCESS OPTIMIZATION DEFECT DETECTION DATA-DRIVEN DECISION MAKING RISK MANAGEMENT

Figure: 1 showing AI role in quality management

ISSN: 3078-2724 Volume 1: Issue 2

The modern quality management solutions have key AI Technologies. Machine Learning (ML) algorithms have become very common in finding anomalies, predicting defects, and optimization of process parameters. One component of ML, Deep Learning (DL) can be used effectively at the situation when it is necessary to inspect images or identify complex patterns and the other statistical algorithms fail to effectively perform the task [12]. Computer Vision is a DL-based system that enables systems to detect defects, measure dimensions, oversee assembly processes in real-time, and do this at a high level of accuracy. Natural Language Processing (NLP) is also becoming popular, which allows discovering insights in quality reporting, operator feedback, and maintenance logs that can be used to implement a continuous improvement [13].

The importance of Data in AI-based quality control cannot be underestimated. Processing of manufacturing creates vast amounts of structured data (sensor data, production data, temperature data) and unstructured data (pictures, audio signals, notes of operators). The use of AI systems is based on the gathering, purification, and synthesis of such information to provide actionable information [14]. Big data can be used to enhance the accuracy of defect detection by supervised learning models, whereas predictive maintenance and dynamically controlled processes can be facilitated with real-time streaming data. The need to secure data and ensure its integrity, consistency, and accessibility is thus a minimum requirement of AI implementation in manufacturing [15].

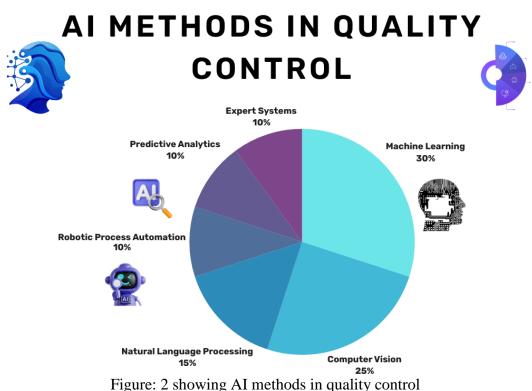
AI can flourish on an integration with Industry 4.0. The Industrial Internet of Things (IIoT) links machines, sensors, and systems, which form a data-rich environment which AI can be implemented. Cloud computing is scalable in terms of storage capacity and computing units, enabling manufacturers to scale AI models [16]. Edge computing augments this by directing real-time decision-making on the production line with low latency and high responsiveness by referring to AI-driven digital twins, simulation of operations, testing of scenarios, and prediction of outcomes, which contributes to proactive quality management [17]. The principles of AI in quality management of manufacturing processes are based on effective algorithms, the quality of the data, and infrastructure of Industry 4.0 technologies. Combined, these components build a very strong

ISSN: 3078-2724 Volume 1: Issue 2

framework that transforms quality management into proactive, predictive, and responsive regulation of the manufacturing processes [18].

Artificial Intelligence Methods of Quality Control

Artificial Intelligence offers a considerable variety of methods which can be used to improve the quality management in manufacturing through smarter detection, prediction, and optimization. These methods transcend conventional inspection techniques by employing data-driven algorithms in continuous learning, adaptation, and improvement of performance in a wide range of production conditions [19]. Production data are often analyzed with the help of Machine Learning (ML) models that reveal signs of quality problems at the earliest stages. With historical trends, supervised learning models are able to forecast the possibility of defects and prescribe remedial measures [20]. As an illustration, regression models assist in optimization of process parameters, whereas classification algorithms are useful in differentiating conforming and defective products. Clustering is one of the unsupervised learning methods used to identify anomalous patterns in process data which can represent hidden quality risks [21].



ISSN: 3078-2724 Volume 1: Issue 2

Convolutional Neural Networks (CNNs) and Deep Learning (DL) has revolutionized the quality inspection process as it allows automated image identification and anomaly detection. Such models are capable of detecting the microscopic defects on the surfaces, assemblies and materials faster and more accurately than human inspectors [22]. Sequential data analysis is also implemented using Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) models, e.g., in monitoring sensor signals over time and identifying when there are abnormal variations in processes. Quality management has become one of the most feasible AI methodologies supported by computer vision as a result of DL [23]. High-resolution images or videos of the products on the production line are captured using cameras and sensors and labeled as defects using AI models, as they may be scratches, misalignments, or wrongly assembled. Not only do these systems minimize the use of manual inspection, but also offer real time, consistent and scalable quality monitoring [24].

Reinforcement Learning (RL) brings the element of adaptive decision-making in quality management. Under this paradigm, AI agents can be trained to adopt the best strategies through an interaction with the manufacturing processes and receives feedback through rewards/penalties [25]. The application of RA can be used to modify the production parameters dynamically and maintain the constant quality of the product in case of changes in raw materials or environment conditions. This is especially useful when the environment of production is very complex or changing and the fixed control systems could not deliver the expected results. ML, DL, computer vision, and RL can provide manufacturers with a toolkit that is versatile and can be used to increase quality assurance [26]. The AI methods change the paradigm of reactivity inspection to predictive and adaptive quality control and minimize defects, waste, and provide greater degrees of precision in contemporary manufacturing.

AI Tools and Frameworks in Manufacturing

The effective implementation of Artificial intelligence (AI) in quality control of manufacturing is not only based on sophisticated algorithms but also the presence of powerful tools and structures that allow using on a large scale in an industrial setting. These tools include free machine learning platforms as well as industrial-specific machine learning platforms with industrial applications.

51 | Page **Kabeer .2024**

ISSN: 3078-2724 Volume 1: Issue 2

Deep learning and machine learning studies have been accelerated by open-source, among others, TensorFlow, PyTorch, Keras, and scikit-learn [27]. These frameworks have ready-to-use frameworks, scalability, flexible APIs, which are appropriate in creating tailor-made solutions to detect defects, process optimization, and anomaly monitoring. Instances such as TensorFlow and PyTorch have general usage in computer vision in automated visual inspection. Their capability to process large amounts of data and the possibility to accelerate with the use of a graphic card makes them quite appropriate in the industrial scenarios [28].

There are customized AI as quality management platforms provided by a number of technology firms. End-to-end solutions based on AI and manufacturing execution systems (MES) and enterprise resource planning (ERP) are offered by Siemens MindSphere, IBM Watson for Manufacturing, GE Predix, and Microsoft Azure Machine Learning [29]. These are the platforms in which manufacturers can use predictive maintenance models, real-time defect detection and process monitoring on a large scale. There are also cloud-based analytics and connection to industrial IoT devices, which can allow an uninterrupted stream of data between shop-floor sensors to AI-powered insights [30].

Al Tools and Frameworks

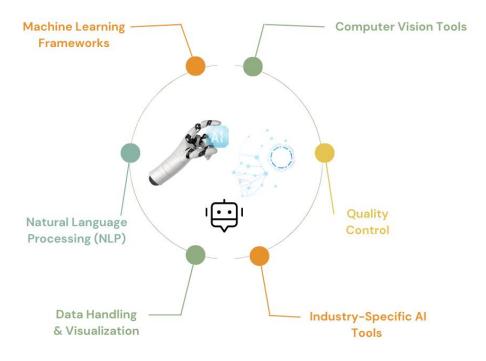


Figure: 3 showing AI tools and frameworks

ISSN: 3078-2724 Volume 1: Issue 2

Artificial Intelligence is being implemented, in the manufacturing industry, in a hybrid approach between cloud and edge computing. Training of big models and long term storage of data is the computational power required by cloud platforms. By contrast, edge AI makes it possible to perform inference in real-time at the production line and minimize latency and make fast decisions [31]. An example is computer vision that is implemented in edge machines which can identify defects immediately the products are pushed on the production belt before defective products can progress on the production line. Another influential framework that is aided by AI is digital twins [32].

They generate virtual proxies of the real-world systems and processes, which allows simulation, monitoring, and optimization of the quality of manufacturing in real time. Digital twins based on AI have the potential to forecast process deviation, model remedial measures, and improve the overall quality of the product [33]. A variety of tools (ANSYS Twin Builder and Siemens NX) are becoming more popular to help with AI-enabled quality management. The combination of open-source-based frameworks, industrial AI platform, cloud-edge architecture, and digital twin technologies can offer manufacturers an entire toolkit. These tools do not only speed up the use of AI to improve quality management, but they also offer scalability, reliability, and achievable usability in any industry that manufactures products [34].

AI in Quality Management Adoption in Industry

The integration of Artificial Intelligence (AI) in the management of the manufacturing quality has gained momentum over the past several years due to the need in the greater efficiency, lesser defects, and better competitiveness. Auto industries, electronics, pharmaceuticals, and even aerospace are on top amongst industries that apply AI in their quality assurance processes. Its level of adoption however differs across sectors as a result of different factors that include regulatory imperatives, complexity of processes, and technological preparedness [35]. The automotive sector is one of the most frequent applications of AI-based computer vision. Firms such as BMW and Toyota have used AI to cut down on the time spent on manual inspection and maintain high standards of quality even in the production lines globally [36]. Examples of AI being used in electronics manufacturing are to identify micro-defects in semiconductors and printed circuit

ISSN: 3078-2724 Volume 1: Issue 2

boards, where a micro-precision level of accuracy is vital. Equally, AI is applied to the pharmaceutical sector to predict quality during drug manufacturing to ensure that the drug complies with stringent regulations [37]. Aerospace industry uses AI to increase the reliability of the components, predictive maintenance, and anomaly detection are distributed to reduce the risk linked to defects [38].

In addition to the inspection of the product, AI has been extensively used in predictive maintenance and monitoring processes. To minimize downtime and enhance the uniformity of production, machine learning models consider sensor data on equipment to forecast failures in their early stages before they happen [39]. AI-driven real-time monitoring allows assessing the parameters of production continuously and correcting deviations in time to preserve the quality of the products. The human expertise and AI-based systems are also highlighted in the field of industrial adoption. Although AI can be used to perform repetitive and data-intensive work, including defect detection and so on, it is necessary to implement human operators to interpret results, conduct AI-based recommendations verification, and address exceptions. Not only does this synergy enhance efficiency, but also makes decisions accountable [40].

Al adoption in industry

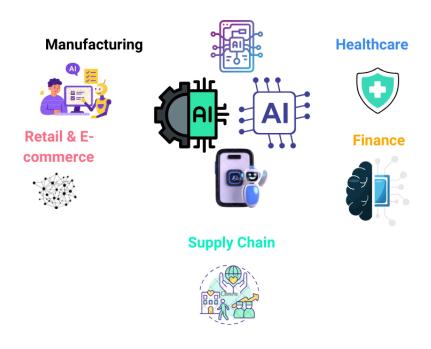


Figure: 4 showing AI adoption in industry

ISSN: 3078-2724 Volume 1: Issue 2

Because of its advantages, there are problems of industrial adoption. Prohibitive can be high implementation costs, particularly to small and medium enterprises (SMEs). The availability and quality of data are also still bottlenecks, with the AI models being able to effectively train only with large and high-quality datasets. Another issue is workforce skills, and the majority of companies cannot find a way to upskill their employees to integrate AI [41]. Additionally, the fear of data security, regulatory intervention and confidence in the decisions made by AI is also an impediment to mass adoption. The use of AI in quality management by the industry is gradually increasing, and its positive results have been observed in the major manufacturing industries. Regardless of the challenges, the further development of tools and training of the workforce, as well as the reduction of costs, is likely to increase the adoption of it in more industries [42].

Benefits and Challenges

The introduction of Artificial Intelligence (AI) into the production quality management has resulted in great enhancements to the efficiency of production, its accuracy, and decisions. Nevertheless, even with its potential, AI implementation also poses technical, organizational, and ethical issues, which need to be considered by the manufacturers. The positive aspect of AI is that it improves the accuracy of defects detection and inspection [43]. Computer vision systems equipped with AI can be used to identify microscopic errors or defects that human operators tend to overlook, even though this will guarantee increased product reliability. This does not only improve on customer satisfaction, but it also minimizes chances of expensive recalls. AI also helps in the reduction of costs and minimization of wastes [44]. Manufacturers will save on wasted material and rework expenses by detecting defects during the early stages of the production process and improving process settings. Machine learning-driven predictive maintenance also avoids equipment failures to reduce downtime and improve equipment lifespan [45].

Scalability and efficiency is another main benefit. The AI systems are not tired of working and it is possible to monitor the quality in real time, as well as produce more quickly. In addition, the systems may be extended to several factories or production lines so that the standard of quality remains uniform throughout the worldwide business [46]. AI allows making the decision that is data-driven. The analysis of big amounts of production data helps manufacturers to provide

ISSN: 3078-2724 Volume 1: Issue 2

actionable insights into the performance of processes by identifying the root causes of defects and should maintain constant improvement by using AI [47].

Workforce preparedness is another challenge. A significant number of manufacturing organizations have a skills deficit on AI, data science, and digital technologies. Employees could become resistant to change when they are not properly trained because they could get scared of being replaced or are not aware of artificial intelligence systems. Reliability and readability are still an issue [48]. Black-box AI models, especially deep learning systems, are usually accurate in their predictions, but they fail to explain the reasons for doing so. In strictly controlled sectors like pharmaceuticals and aerospace, the level of transparency in a decision is vital to adherence and safety. AI represents the game changer in the quality management of manufacturing but it has significant challenges [49]. HR needs to plan strategically and invest in capabilities as well as create explainable and trustworthy AI systems to balance opportunities and challenges.

Future Trends and Research Directions

With the ongoing digital transformation in the manufacturing sector, the role of the Artificial Intelligence (AI) in quality management is likely to become highly important. In the next years, AI will be used in new ways due to the emerging technologies, changing business models, and global sustainability pressures. It is possible to identify a few trends and research directions that have been particularly instrumental [50]. Another trend that needs to be pursued urgently in the future is the evolution of explainable AI (XAI). The current black-box models and especially deep learning systems are not always transparent, and this makes it challenging to determine how decisions are made by the operator. Future studies will be based on interpretable AI models which can yield human interpretable reasoning, particularly on highly regulated industries like pharmaceuticals and aerospace, and medical manufacture. This will enhance trust, accountability and compliance [51].

AI will also be applied more to the Industrial Internet of Things (IIoT) and collaborative robotics in order to make quality management fully autonomous. Connected machines, smart sensors, and robotic systems with AI will enable factories to be able to self-monitor and to self-correct. Studies

ISSN: 3078-2724 Volume 1: Issue 2

are also heading on the direction of lights-out manufacturing, whereby whole processes of production run without much human oversight [52]. Sustainability is a current trend all over the world and AI will indeed help in facilitating green production. The future uses of AI will be aimed at decreasing the amount of energy used, preventing wastes, and maximizing the usage of resources. Defective products can be minimized with the help of predictive analytics, process optimization algorithms can decrease emissions and facilitate the principles of the circular economy. It can be expected that research will examine how AI can meet the global standards and regulations on sustainability [53].

With this growing adoption, international organizations and governments should come up with standards and regulatory systems of AI in manufacturing. These will include data privacy, cybersecurity, and ethical AI application, and safe and equitable application. The studies in this field will be directed at developing AI systems that will not violate the technical norms and the principles of ethics [54]. The humanizing of future manufacturing will not remove it but instead redefine it. Research is also looking at human-AI collaboration whereby AI assist operators with repetitive work with humans providing oversight, creativity as well as critical decision-making. Academia and industry will both be up skilling the workforce in AI literacy [55]. Transparency, integration with emerging technologies, sustainability, and adaptation of workforce will define the future of the AI in management of quality in manufacturing. Continuous research will also enable technical potential development as well as responsible and extensive implementation in the industry [56].

Conclusion

The field of manufacturing quality management is changing with the help of Artificial Intelligence (AI), as the new approach to quality management shifts toward the practices of reactive inspection and the one of predictive, proactive, and adaptive quality management. With the help of machine learning, deep learning, computer vision, and reinforcement learning, manufacturers can now identify defects with more accuracy than ever before, optimize processes in real time, and waste less but still produce products of a consistent standard. The combination of AI and Industry 4.0

ISSN: 3078-2724 Volume 1: Issue 2

technologies including IoT, robotics, edge computing, and digital twins makes it even more powerful to facilitate smarter and more data-driven decisions in manufacturing ecosystems.

The review notes that the automotive, electronics, aerospace, and pharmaceutical industries already enjoy the tangible benefits of the adoption of AI. These are low costs, high efficiency, scalability and quality efficiency against strict quality standards. Nevertheless, several difficulties still remain, especially regarding the availability of data, labor preparedness, cost of implementation, and the understandability of the decisions made by AI. The financial and technical barriers faced by small and medium enterprises (SMEs) can impede the implementation of AI on a large scale, whereas regulatory and ethical issues remain the factors that slow the implementation in the most sensitive industries.

As a prospect, the future of AI in manufacturing quality management is establishing trustful and explainable AI systems, making them more transparent with high levels of compliance. The alignment between AI applications and the global sustainability objectives, which would allow making the manufacturing greener and more resource-efficient, is also crucial. The intersection of AI and IIoT, cloud-edge systems, and multi-robotics is likely to open the door to more autonomous and robust systems of production. Simultaneously, the change in the field of workforce and human-AI interaction will continue to be urgent, with humans offering control, problem-related judgment, and imagination that will supplement the analytical capabilities of AI.

References

- [1]. Huang T, Bai E. AI IN QUALITY MANAGEMENT IN MANUFACTURING INDUSTRY. Digital Transformation: Organizational Challenges and Management Transformation Methods. 2023 Jun 1;159.
- [2]. Maganga DP, Taifa IW. Quality 4.0 conceptualisation: an emerging quality management concept for manufacturing industries. The tqm journal. 2023 Jan 26;35(2):389-413.
- [3]. Lekan A, Aigbavboa C, Emetere M. Managing quality control systems in intelligence production and manufacturing in contemporary time. International Journal of Construction Management. 2023 Jun 11;23(8):1436-46.

- [4]. V. Azamfirei, F. Psarommatis, Y. Lagrosen, Application of automation for in-line quality inspection, a zero-defect manufacturing approach, Journal of Manufacturing Systems 67 (2023) 1–22.
- [5]. D. Powell, M. C. Magnanini, M. Colledani, O. Myklebust, Advancing zero defect manufacturing: A state-of-the-art perspective and future research directions, Computers in Industry 136 (2022) 103596.
- [6]. E. Verna, G. Genta, M. Galetto, F. Franceschini, Zero defect manufacturing: a self-adaptive defect prediction model based on assembly complexity, International Journal of Computer Integrated Manufacturing 36 (1) (2023) 155–168.
- [7]. N. Leberruyer, J. Bruch, M. Ahlskog, S. Afshar, Enabling an ai-based defect detection approach to facilitate zero defect manufacturing, in: IFIP International Conference on Advances in Production Management Systems, Springer, 2023, pp. 634–649.
- [8]. G. Chryssolouris, K. Alexopoulos, Z. Arkouli, A Perspective on Artificial Intelligence in Manufacturing, Vol. 436, Springer Nature, 2023.
- [9]. Roy Ghatak R, Garza-Reyes JA. Investigating the barriers to Quality 4.0 adoption in the Indian manufacturing sector: insights and implications for industry and policy-making. International journal of quality & reliability management. 2024 May 10;41(6):1623-56.
- [10]. Javaid M, Haleem A, Singh RP, Suman R. Artificial intelligence applications for industry 4.0: A literature-based study. Journal of Industrial Integration and Management. 2022 Mar 21;7(01):83-111.
- [11]. Javaid M, Haleem A, Singh RP, Suman R. Artificial intelligence applications for industry 4.0: A literature-based study. Journal of Industrial Integration and Management. 2022 Mar 21;7(01):83-111.
- [12]. G. Fragapane, R. Eleftheriadis, D. Powell, J. Antony, A global survey on the current state of practice in zero defect manufacturing and its impact on production performance, Computers in Industry 148 (2023) 103879.
- [13]. E. Verna, G. Genta, M. Galetto, F. Franceschini, Defect prediction for assembled products: a novel model based on the structural complexity paradigm, The International Journal of Advanced Manufacturing Technology 120 (5) (2022) 3405–3426.

ISSN: 3078-2724 Volume 1: Issue 2

- [14]. E. Verna, G. Genta, M. Galetto, F. Franceschini, Towards zero defect manufacturing: probabilistic model for quality control effectiveness, in: 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT), IEEE, 2021, pp. 522–526
- [15]. F. Psarommatis, G. May, P.-A. Dreyfus, D. Kiritsis, Zero defect manufacturing: state-of-the-art review, shortcomings and future directions in research, International journal of production research 58 (1) (2020) 1–17
- [16]. Chen Y, Lan L. A fault detection technique for air-source heat pump water chiller/heaters. Energy Build. 2009;41:881–7. https://doi.org/10.1016/j.enbuild.2009.03.007.
- [17]. Saha, P., Talapatra, S., Belal, H.M., Jackson, V., 2022. Unleashing the Potential of the TQM and Industry 4.0 to Achieve Sustainability Performance in the Context of a Developing Country. Global J. Flexible Syst. Manage. 23, 495–513. https://doi.org/10.1007/s40171-022-00316-x
- [18]. Saihi, A., Awad, M., Ben-Daya, M., 2023. Quality 4.0: leveraging Industry 4.0 technologies to improve quality management practices a systematic review. Int. J. Qual. Reliab. Manage. 40, 628–650. https://doi.org/10.1108/IJQRM-09-2021-0305
- [19]. Salimbeni, S., Redchuk, A., Rousserie, H., 2023. Quality 4.0: technologies and readiness factors in the entire value flow life cycle. Prod. Manuf. Res. 11. https://doi.org/10.1080/21693277.2023.2238797
- [20]. Baran E, Korkusuz Polat T. Classification of Industry 4.0 for total quality management: A review. Sustainability. 2022 Mar 11;14(6):3329.
- [21]. Chouchene A, Carvalho A, Lima TM, Charrua-Santos F, Osório GJ, Barhoumi W. Artificial intelligence for product quality inspection toward smart industries: quality control of vehicle non-conformities. In2020 9th international conference on industrial technology and management (ICITM) 2020 Feb 11 (pp. 127-131). IEEE.
- [22]. Nzumile JM, Mahabi V, Taifa IW. Contribution of Industry 4.0 technologies in adopting Metrology 4.0 in manufacturing industries. InSmart Engineering Management 2024 Mar 1 (pp. 43-72). Cham: Springer International Publishing.

60 | Page **Kabeer .2024**

- [23]. Mueller C, Mezhuyev V. AI models and methods in automotive manufacturing: a systematic literature review. Recent innovations in artificial intelligence and smart applications. 2022:1-25.
- [24]. Cassoli BB, Jourdan N, Nguyen PH, Sen S, Garcia-Ceja E, Metternich J. Frameworks for data-driven quality management in cyber-physical systems for manufacturing: A systematic review. Procedia CIRP. 2022 Jan 1;112:567-72.
- [25]. Ali K, Johl SK. Soft and hard TQM practices: future research agenda for industry 4.0. Total Quality Management & Business Excellence. 2022 Oct 3;33(13-14):1625-55.
- [26]. Khinvasara T, Ness S, Shankar A. Leveraging AI for enhanced quality assurance in medical device manufacturing. Asian Journal of Research in Computer Science. 2024 Apr 8;17(6):13-35.
- [27]. Santos, G., Sá, J.C., Félix, M.J., Barreto, L., Carvalho, F., Doiro, M., Zgodavová, K., Stefanović, M., 2021. New needed quality management skills for quality managers 4.0. Sustainability 13. https://doi.org/10.3390/su13116149
- [28]. Sariyer, G., Mangla, S.K., Kazancoglu, Y., Ocal Tasar, C., Luthra, S., 2021. Data analytics for quality management in Industry 4.0 from a MSME perspective. Ann. Oper. Res. https://doi.org/10.1007/s10479-021-04215-9
- [29]. Scislo, L., 2023. Single-Point and Surface Quality Assessment Algorithm in Continuous Production with the Use of 3D Laser Doppler Scanning Vibrometry System. Sensors 23. https://doi.org/10.3390/s23031263
- [30]. Sekar, C., Falmari, V.R., Brindha, M., 2023. Smart camera with image encryption: a secure solution for real-time monitoring in Industry 4.0. J. Real-Time Image Process. 20. https://doi.org/10.1007/s11554-023-01338-z
- [31]. Shafiq, M., Thakre, K., Krishna, K.R., Robert, N.J., Kuruppath, A., Kumar, D., 2023. Continuous quality control evaluation during manufacturing using supervised learning algorithm for Industry 4.0. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-023-10847-x

- [32]. Sharma, A., Singh, B.J., 2022. Understanding LSS 4.0 through golden circle model and reviewing its scope in Indian textile industry. Int. J. Six Sigma Compet. Advantage 14, 120–137. https://doi.org/10.1504/IJSSCA.2022.124301
- [33]. Sharma, M., Joshi, S., 2023. Digital supplier selection reinforcing supply chain quality management systems to enhance firm's performance. TQM J. 35, 102–130. https://doi.org/10.1108/TQM-07-2020-0160
- [34]. Ammar M, Haleem A, Javaid M, Walia R, Bahl S. Improving material quality management and manufacturing organizations system through Industry 4.0 technologies. Materials Today: Proceedings. 2021 Jan 1;45:5089-96.
- [35]. Goecks LS, Santos AA, Korzenowski AL. Decision-making trends in quality management: a literature review about Industry 4.0. Production. 2020 May 11; 30:e20190086.
- [36]. Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 53, 1–62.
- [37]. Escobar, C. A., Arinez, J., Macias, D., & Morales-Menendez, R. (2020). A separability-based feature selection method for highly unbalanced binary data. International Journal on Interactive Design and Manufacturing, 2020, 1.
- [38]. Escobar, C. A., & Morales-Menendez, R. (2019). Processmonitoring-for-quality—A model selection criterion for support vector machine. Procedia Manufacturing, 34, 1010–1017.
- [39]. Demlehner Q, Schoemer D, Laumer S (2021) How can artifcial intelligence enhance car manufacturing? A Delphi study-based identification and assessment of general use cases. Int J Inf Manage 58:102317. https://doi.org/10.1016/j.ijinfomgt.2021.102317
- [40]. Ghani EK, Arifn N, Sukmadilaga C (2022) Factors infuencing artifcial intelligence adoption in publicly listed manufacturing companies: a technology, organisation, and environment approach. IJAEFA 14:108–117 61. Hammer A, Karmakar S (2021) Automation, AI and the future of work in India. ER 43:1327–1341. https://doi.org/10.1108/ER-12-2019-0452

- [41]. Ghelani H. Six Sigma and Continuous Improvement Strategies: A Comparative Analysis in Global Manufacturing Industries. Valley International Journal Digital Library. 2023:954-72.
- [42]. Regona M, Yigitcanlar T, Xia B, Li RY. Opportunities and adoption challenges of AI in the construction industry: A PRISMA review. Journal of open innovation: technology, market, and complexity. 2022 Feb 28;8(1):45.
- [43]. Aljawder A, Al-Karaghouli W. The adoption of technology management principles and artificial intelligence for a sustainable lean construction industry in the case of Bahrain. Journal of Decision Systems. 2024 Apr 2;33(2):263-92.
- [44]. Peres RS, Jia X, Lee J, Sun K, Colombo AW, Barata J. Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook. IEEE access. 2020 Dec 7;8:220121-39.
- [45]. Hartley JL, Sawaya WJ (2019) Tortoise, not the hare: digital transformation of supply chain business processes. Bus Horiz 62:707–715. https://doi.org/10.1016/j.bushor.2019.07.006
- [46]. Kyvik Nordås H, Klügl F (2021) Drivers of automation and consequences for jobs in engineering services: an agent-based modelling approach. Front Robot AI 8:637125. https://doi.org/10.3389/frobt.2021.637125
- [47]. McElheran, K., et al., AI adoption in America: Who, what, and where. Journal of Economics & Management Strategy, 2024. 33(2): p. 375-415.
- [48]. Dinmohammadi, F. Adopting Artificial Intelligence in Industry 4.0: Understanding the Drivers, Barriers and Technology Trends. In 2023 28th International Conference on Automation and Computing (ICAC). 2023. IEEE.
- [49]. Yang, L. and M. Zhu. Review on the status and development trend of AI industry. in 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). 2019. IEEE.
- [50]. Sudhir, S., AI and Changing Trends in Legal Industry. Aarhat Electronic International Interdisciplinary Research Journal (EIIRJ), 2021.

- [51]. Arnold, Z., I. Rahkovsky, and T. Huang, Tracking AI investment: initial findings from the private markets. Center for Security and Emerging Technology: Washington, DC, USA, 2020
- [52]. Schopf, M., How to Integrate AI into an Existing Investment Process-A Practical Guide. Available at SSRN 4843767, 2024.
- [53]. Brozović, V., APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE SECTOR OF INVESTMENT FUNDS. 2019, University of Zagreb. Faculty of Economics and Business. Department of Finance.
- [54]. Mou, X., Artificial intelligence: Investment trends and selected industry uses. International Finance Corporation, 2019. 8(2): p. 311-320.
- [55]. Pham, H.L., et al., Drivers of Successful Adoption of Eco-innovation: Case Studies of Agricultural Cooperatives in Vietnam. Asian Journal of Agriculture and Development, 2024. 15(2): p. 1-20.
- [56]. Mubarok K, Arriaga EF (2020) Building a smart and intelligent factory of the future with industry 4.0 technologies. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1569/3/032031