

ISSN: 3079-1979

Volume 1: Issue 2 Page: 40-56

Role of Computer Science in Transforming Modern Agriculture

Ankur Singh^{1*}

¹University of North America

¹Singhan@live.uona.edu

Submitted: 13/08/2025 **Accepted:** 16/09/2025 **Published Online:** 21/09/2025

Abstract

The modern farming has been transformed through computer science integration, which has brought about data-based, automated and intelligent solutions. Precision farming, optimization of resource management and enhancement of crop quality and yield are achieved through technologies like the artificial intelligence and machine learning, IoT, robotics, and big data analytics. Data collection to monitor soil, climate, and crops provides information to make an informed decision, and block chain provides supply chain transparency and traceability. Nevertheless, even with these problems, such as high cost, technical skills need and insufficient digital infrastructure, the advantages of computer science in agriculture, in terms of greater productivity, sustainability, and resilience, are immense. This review identifies the applications, benefits, difficulties and future trends with respect to digital agriculture development.

Keywords: Digital Agriculture, Precision Farming, Artificial Intelligence, Internet of Things, Big Data Analytics, Robotics, Smart Farming, Sustainability, Crop Management

1. INTRODUCTION

Human civilization has been sustained over thousands of years on agriculture, which has been the source of food, raw material, and the means of livelihoods of a great percentage of the world. According to the trends, in the world, the population will surpass 9 billion people by the year 2050 and this will put pressure on the food production [1]. This puts a tremendous strain on the conventional ways of farming, which is usually dependent on human labor, erratic weather conditions, and conventional equipment. Meanwhile, these issues as climate changes, soil erosion, water shortage, and sustainable agricultural methods make the task of fulfilling these needs more difficult, ultimately relying on conventional methods [2]. In this regard, adoption of contemporary

ISSN: 3079-1979

technologies especially computer science has come out as an influential aspect in revolutionizing agriculture.

Computer science that concerns itself with creation and use of computational systems, software and algorithms has had an incredible influence in the different sectors of the society and agriculture is not an exception. Digital revolution has created possibilities of what has been commonly referred to as smart farming or digital agriculture. Farming is no longer an activity that is labor-intensive, but instead is becoming data-driven, automated, and highly efficient with the help of artificial intelligence (AI), machine learning (ML), big data analytics, Internet of Things (IoT), robotics, and remote sensing [3].

Computer science has made one of its most important contributions to precision agriculture in which the information gathered by sensors, satellites, drones, and weather stations is processed to optimize the planting, irrigation, fertilization, and harvesting processes. Farmers can now be able to practice to various areas unlike in the past when they used to apply all the practices in a field, thus enhancing efficiency and minimizing wastes [4]. On the same note, AI-based models are used in forecasting crop yields, detecting diseases and pests at an early stage, and make real-time guidance to farmers. These improvements increase productivity in addition to ensuring sustainable management of the resource by reducing overuse of water, fertilizers and pesticides [5].

Besides, computer science is essential in the solution of food supply chain management problems. Block chain technologies provide traceability and transparency of farm products, minimizing fraud and providing the safety of food throughout the whole supply chain. Cloud-based services and mobile applications have also enabled the farmers whether in rural and remote locations because they have access to real-time weather information, market prices, and guidance. In spite of these developments, there are no smooth sailing to the implementation of computer science in agriculture [6]. Low digital infrastructure, lack of technical skills in the farmers, and the expensive nature of adopting the advanced technologies are also a major obstacle especially in the developing nations. However, these gaps are slowly being filled by the continuing research, government efforts and co-operation between the technology designers and the agricultural stakeholders [7]. With the advent of computer science in agriculture, a new era in which agriculture relies solely on experience and manual labor is passed, and which is now backed by data, automation, and smart

ISSN: 3079-1979

systems. This review examines the different uses, advantages, problems and future outlook of computer science in the revolution of agriculture in the contemporary world [8].

2. PRACTICES OF COMPUTER SCIENCE IN AGRICULTURE

Computer science applications in agriculture have brought new kinds of applications which are transforming the conventional farming practices into very efficient, sustainable, and technology-related practices. These applications cut across various fields, such as crop monitoring and soil analyses, supply chain management and decision support frameworks. Among the most important applications is precision agriculture, which is based on data-driven insights and can be used to optimize resource management and gain the maximum of yields [9]. Farmers can check the health of their crops, nutrient levels and soil moisture with extreme precision using sensors, drones and satellite images. This data is then analyzed by computer algorithms which will suggest the exact quantities of water, fertilizers and pesticides to be used, which minimizes the quantity of waste and impact on the environment, and maximizes productivity [10].

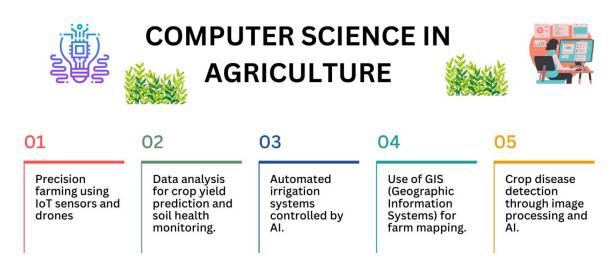


Figure: 1 showing computer science in agriculture

The other critical field is use of Geographic Information Systems (GIS) and remote sensing. GIS tools allow mapping of farmlands to determine the relationships of the soil fertility, crop growth and weather conditions. The use of remote sensing technologies, which are analyzed with computers, enables farmers to view a vast area of land in real time. This assists in early detection of crop diseases, pest infestation and water stress, and therefore interventions can be undertaken

ISSN: 3079-1979

in time [11]. Another important application is the Internet of Things (IoT), through which the devices and sensors get constant information on farms. As an illustration, the smart irrigation system employs IoT sensors to detect soil moisture and automatically control watering time to meet the optimum water use demands. IoT can also be used in livestock monitoring where wearable devices are used to monitor the health of animals, their movement, and food habits, which help to prevent disease outbreaks [12].

Machine learning (ML) and Artificial Intelligence (AI) have also made agricultural decision-making more effective. Artificial intelligence-based applications will be able to process large quantities of farm data to estimate crop production, weather effects, and which plants to grow at what time. Plant diseases are detected and remedies suggested to the diseases by use of image recognition algorithms that are usually quicker and more precise than the human counterparts [13]. Another use of computer science is robotics which is transforming manual labor activities like harvesting, weeding and planting. Robotic harvesters and autonomous tractors make work more productive and eliminate the need to hire human workers [14].

Agricultural supply chains are also being implemented using block chain technology which guarantees transparency, traceability and food safety. The consumers are able to certify the source and quality of food products and the farmers gain access to secure fair trade. Through such applications, it is seen that computer science is not just ensuring that farms become highly efficient, but the entire agricultural ecosystem is enhanced. Agriculture is shifting towards being more sustainable, more productive and able to withstand market and climate pressures by incorporating technologies such as AI, IoT, GIS, and robotics [15].

3. DATA-DRIVEN AGRICULTURE

Data has emerged as one of the most useful resources to be used in innovation and decision making in the modern era. Agriculture was traditionally a data-driven industry that relied on manual observation and experience, but is later becoming a data-driven industry. Through the inclusion of computer science, farmers and agricultural businesses have been able to gather, process, and analyze large volumes of information to make sound decisions that lead to improved productivity, efficiency, and sustainability [16]. Big data analytics is one of the fundamental elements of the

ISSN: 3079-1979

data-driven agriculture. Farms produce vast quantities of data in the form of sensors, drones, weather stations and machinery. Such data sets are soil structure, rate of crop production, precipitation, and export prices [17].

Climate modeling and weather prediction is another application of importance. Climate variability has a high susceptibility on agriculture which could have a significant impact on the production of crops. With sophisticated models of computing, scientists are able to model climate trends and predict extreme climate events like droughts, floods or outbreak of pests. Using these forecasts in the management of their farms, farmers are able to implement preventative actions to protect their crops, modify the irrigation timing and design contingency plans [18]. The other field that data-driven approaches have been very valuable is soil and water quality monitoring. Sensors and imaging technology offer real time data regarding nutrients, pH, moisture content of soil. This information is analyzed and represented using computerized systems, which allow accuracy in fertilization and irrigation. Consequently, farmers are in a position to minimize the unnecessary application of chemical inputs, save water and encourage sustainable farming [19].

Share of Technologies in Data-Driven Agriculture

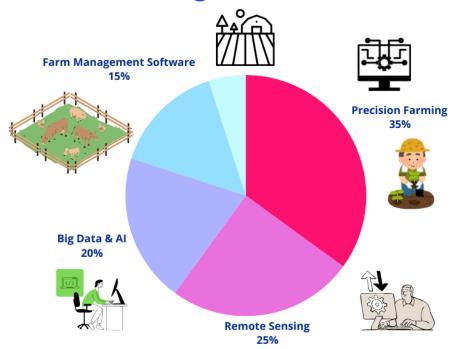


Figure: 2 showing share of technologies in data-driven agriculture

ISSN: 3079-1979

In addition, data-driven solutions are also being used to enhance livestock management. Wearable and automated feeding systems monitors the occurrence of continuous data on the health, growth and behavior of the animals. This information is analyzed by algorithms to identify disease early signs, optimize breeding programs, and provide the optimal nutrition. These practices are not only animal welfare enhancing activities but also boost farm profitability [20]. On a bigger level, policy-making and food security planning are applications of agricultural big data by governments and organizations. Information gathered in different regions assists in determining trends in food production, risks of shortages, and interventions to undertake to achieve sustainable agriculture [21]. The concept of data-driven agriculture indicates a paradigm shift of farm management based on intuition to technology-based and evidence-based farm management. Agriculture is becoming resilient, efficient, and sustainable by utilizing the power of data analytics, climate models and real-time monitoring. The fact that computer science is still being integrated in this field will see farming revolutionized and global food systems guaranteed in the future [22].

4. ADVANTAGES OF USING COMPUTER SCIENCE IN AGRICULTURE

Computer science has offered great advantages to the agricultural sector and has transformed the way farming is practiced and it has made agricultural systems more efficient, sustainable, and profitable. With the incorporation of new technologies, like artificial intelligence, machine learning, Internet of Things (IoT), big data, automation into agriculture, the farming sector has transformed to become a contemporary, technology-oriented industry. Among the most remarkable advantages, there is enhanced productivity and efficiency. Precision agriculture enables farmers to apply the appropriate amount of water, fertilizers, and pesticides in the exact location that they are required [23]. The monitoring systems and predictive models based on computers minimize guess-work and streamline the farming activities. As an example, AIs can be used to predict crop yield, allowing farmers to plan more efficient harvests, whereas automated agriculture can be used to reduce the need of labor, such as robotic harvesters and intelligent irrigation systems, which ensure timeliness in farm management [24].

The other significant benefit is resource sustainability. Water shortage, soil erosion and overuse of chemicals are some of the challenges that are associated with agriculture. Computer science has assisted in overcoming these problems as it can monitor real time the quality of the soils and water

Singh. 2025 45 | Page

ISSN: 3079-1979

to ensure efficient utilization of inputs [25]. An example is the irrigation systems which can be controlled by the sensors of the IoT depending on the moisture content of the soil to save on water and achieve the maximum crop yield. On the same note, computer models suggest accurate applications of fertilizers, which minimize pollution in the environment and keep soil healthy [26].

Cost saving and minimizing the waste is also a major advantage. Automation enables the reduction of human labor, and predictive analytics can help minimize crop loses through estimation of possible risks of pest infestation, or weather extremes. Image recognition algorithms can help to identify plant diseases at an early stage when farmers can take immediate measures to avoid massive scale destruction of crops and reduce the waste of pesticides [27]. This does not only save money but also increases the overall profitability of the farm. Computer science also increases decision making among farmers. Mobile applications and cloud-based services that provide access to real-time information, weather conditions, and the prices of the products empower even the small-scale farmers to make the right decisions [28]. This results in superior quality of crop selection, planting and harvesting, and market attachment, resulting in equitable trade and

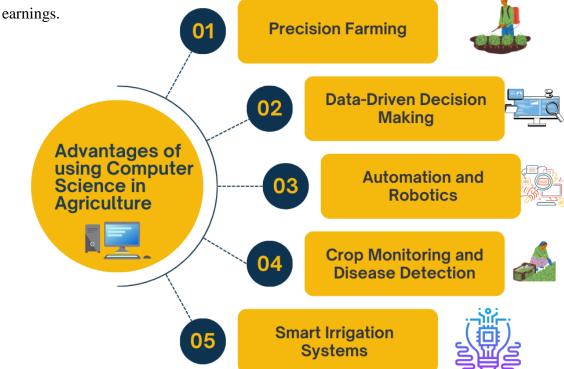


Figure: 3 showing advantages of using computer science in agriculture

ISSN: 3079-1979

Computer science can also be integrated to promote food security in the world because it enhances traceability and transparency in the food supply chains. Block chain technologies are used to trace agricultural products through the farms to consumers ensuring the quality and safety of food. This creates consumer confidence and enhances the trading prospects of farmers [29]. Computer science in agriculture is not only limited to enhancement of farms to improve food security and sustainability in the whole world. Computer science is taking the center stage in defining the future of agriculture by contributing to saving resources, cost reduction, efficiency, and informed decision-making [30].

5. CHALLENGES AND LIMITATIONS

Although the widespread use of computer science in agriculture has a lot of advantages, the practice is plagued by various challenges and limitations that should be overcome to make it effective and acceptable by many people. These barriers include technological and economic ones, social and infrastructural. These issues are important to understand how to devise methods to make digital agriculture accessible, sustainable and efficient. The start-up cost and infrastructure is one of the main problems it faces [31]. Emerging technologies like AI-based machines, the Internet of Things, drones, and accuracy sensors demand lots of finances. Most of the small-scale farmers especially in the developing world might not be able to access the capital required to invest in such systems. Also, rural areas frequently lack the infrastructure including access to power, high-speed internet as well as cloud computing, which restricts the use of computer science-based solutions [32].

The second significant shortcoming is the digital divide and farmer's unawareness. Although technological development might be helpful in an urban and well-connected farm, not all rural farmers are accustomed to digital tools and applications. Farmers do not always have adequate training and technical support, thus finding it hard to apply technologies [33]. Such lack of knowledge may lead to the failure of using the tools available effectively and minimizing their possible impact. There are also issues of privacy and security of the data. The aggregated agricultural information of sensors, drones, and cloud systems casts doubts on who owns the information and its applications [34]. The unauthorized access or misuse of data may have

ISSN: 3079-1979

financial and competition consequences to farmers, and the inability to identify definite regulations on how the data should be managed makes it more complicated [35].

This is another weakness because it needs technical knowledge to perform and sustain digital solutions. High technology agriculture can be based on sophisticated algorithms, machine learning, and robotics and may need specific skills to install, adjust, and troubleshoot. Farmers may fail to operate these systems due to lack of local technical assistance or training and experience and create downtime or misunderstand the data [36]. Also, there is the question of reliability of technology in the changing field conditions. The work of sensors, drones, and automated equipment can be influenced by extreme weather, dust, uneven power supply, etc. The inefficiency and reliability of technology-based farming can be diminished due to incorrect decisions that may happen because of inaccurate readings or system failures [37].

Even though this is the case, these shortcomings are slowly being dealt with through research, government programs and private-corporate collaborations. Farmers are being assisted to hopd existing obstacles to adoption through subsidies, training sessions, affordable technology solutions and better digital infrastructure [38]. Although computer science is very promising in revolutionizing agriculture, it is important to address the issues like high costs, lack of digital literacy, data security, technical expertise requirements, and reliability of the technology. These challenges must be overcome in order to make sure that digital agriculture can be implemented to its utmost potential and positively impact farmers of all sizes and areas [39].

6. DIGITAL AGRICULTURE TRENDS TO THE FUTURE

Agriculture is increasingly being linked with the future of computer science, as it may mark the beginning of the high efficiency, sustainable, and technology-driven farming system. It is assumed that emerging technologies and innovative applications will transform all the spheres of agriculture, including crop production and livestock management, optimization of supply chains and adaptation to a changing climate [40]. The use of smart sensors and drones is one of the most evident trends of the future. The devices will most likely get cheaper, precise and interconnected, offering real-time crop, soil, and environment data. Multispectral cameras can also identify nutrient deficiencies, pest infestations and water stress at an early stage on drones, thus facilitating

ISSN: 3079-1979

timely interventions [41]. Concurrently, integrated soil and weather sensors with AI systems will assist in optimizing the irrigation, fertilization, and crop management practices in unprecedented accuracy.

Artificial intelligence (AI) and machine learning (ML) become the next wave of revolution in agricultural decision-making. The next uses of AI can be climate resilience predictive analytics, disease diagnosis, and intelligent farm advisory systems, which give personal advice to farmers. These systems will combine various sources of data such as weather predictions, satellite images, and market patterns to provide actionable data to enhance productivity and limit losses. The other important trend is cloud computing and edge computing integration [42]. Clouds will enable farmers and researchers to cooperate to store and analyze agricultural information at a large scale and access it anywhere. Edge computing, however, handles the data within the farm, so latency decreases, and the decision-making process can be made real-time even in the regions with insufficient internet connectivity. All these technologies will be combined to make data-driven farming more efficient and reliable [43].

It is also expected that 5G and high-tech connectivity networks will become essential in the future of agriculture. The real-time, autonomous machinery, and precision applications of large farms and remote areas will be supported by high-speed, low-latency communication. This will enable the easy implementation of IoT devices, drones, robots, etc. to implement an integrated and efficient management of the farm [44]. Labor efficiency will also be improved with the help of robotics and automation. Robotic harvesters, autonomous tractors, and AI-controlled weed management systems will probably be the standard devices in the contemporary farms. Such technologies do not only lower the reliance on manual labor but also provide accurate interventions that enhance the quality of crops and their yield [45].

Computer science in digital agriculture will define the future of the intelligent interconnected, and sustainable farming system. With the help of AI, IoT, robotics, cloud computing and block chain, agriculture will be able to meet the world food needs, combat climate change, and improve the production with minimum environmental harm. These tendencies lead to the future when technology and agriculture will cooperate to provide food security and sustainable development [46].

ISSN: 3079-1979

7. CONCLUSION

The introduction of computer science in the agricultural field is a revolutionary change in the production, handling and distribution of food. People are moving to complement (and replace) traditional approaches to farming, which were dependent on experience, intuition, and manual labor, with solutions based on technology. With the overlap of computer science and agriculture, this has led to the so-called digital agriculture or smart farming, a system in which data, automation, and smart decision-making tools are used to promote efficiency, productivity, and sustainability throughout the agricultural value chain.

In this review, it is clear that computer science has been applied in almost all areas of agriculture. An example of this is precision agriculture, which allows farmers to optimize the process of irrigation, fertilization and controlling pests according to the real-time data, which minimizes the waste and increases the crop yields. Machine learning and artificial intelligence have enabled farmers to have predictive knowledge such as predicting crop yields, identifying diseases and pests before they damage much. On the same note, robotics and automation has lessened the reliance on human labor and at the same time, perform their duties with high precision, therefore, timely sowing, weeding and harvesting.

Another important innovation, which is applying data in agriculture, is changing agricultural practices using intuition to present evidence-based practices. The concept of big data analytics, IoT-powered sensors, and remote monitoring systems allows keeping a constant check on the health of the soil, weather conditions, and the condition of crops and livestock behavior. These lessons can not only underpin the management of the farms, but also the policies, resource distribution, and food security policies in the regions and the nations. Moreover, blockchain and other technologies available are improving the transparency and traceability of the supply chain, improving food safety, curbing fraud, and creating consumer confidence.

The use of computer science in agriculture is not without a few problems, even with these considerable advantages. The major challenges include the high implementation cost, technical incompetence, ineffective digital infrastructural support, and ignorance of the farmers, particularly those located in the developing world. The data security and privacy issues are another challenge

ISSN: 3079-1979

to the collection, storage, and use of agricultural information. These challenges can only be overcome through special interventions such as infrastructure investments, subsidized technology, training, as well as government, research, and corporate cooperation.

As we head to the future, the field is set to undergo further change with the introduction of new trends in the field, including the use of AI to create advisory systems, 5G-based IoT network development, autonomous robotics, the integration of edge and cloud computing, and advanced blockchain applications. Such innovations are not only supposed to enhance productivity and efficiency but also improve the sustainability of the environment, reduce wastage of resources, and reinforce global food security. With the combination of human experience and intelligent technology, agricultural industry will be able to be more resistant to climate change, shortage of labor and fluctuation in the market.

The field of computer science has re-invented the world of modern-day agriculture. The combination of digital technologies, data metrics, and automation allows more accurate, informed and sustainable farming. With the ever-evolving technology, its presence in the agribusiness sector will only grow to provide new opportunities of innovation, efficiency, and resiliency. These benefits will require interdisciplinary work, investment in digital infrastructure, and education of farmers, in order to maximize them. In a final conclusion, the impact of computer science in agriculture is not only a technological breakthrough, but a way to a more sustainable, more productive and safe world food system.

References

- [1]. Dayıoğlu MA, Turker U. Digital transformation for sustainable future-agriculture 4.0: A review. Journal of Agricultural Sciences. 2021;27(4):373-99.
- [2]. Thongnim P, Yuvanatemiya V, Srinil P. Smart agriculture: Transforming agriculture with technology. InAsia simulation conference 2023 Oct 13 (pp. 362-376). Singapore: Springer Nature Singapore.
- [3]. Singh N. Role of computer technology in agriculture sector: a review. International Journal of Computer Science and Engineering (IJCSE). 2020;9(5):7-14.

- [4]. Dhanta R, Mwale M. Transforming agriculture with modern AI: harnessing artificial intelligence to revolutionize farming. InLeveraging AI and emotional intelligence in contemporary business organizations 2024 (pp. 350-370). IGI Global Scientific Publishing.
- [5]. Shrivastava A, Goyal HR, Habelalmateen MI, Yadav K, Pushkarna G, Harikrishna M. Environmental Computing and ICT-Driven Agricultural Engineering: Sustainable Solutions for Modern Agriculture. In2024 IEEE 4th International Conference on ICT in Business Industry & Government (ICTBIG) 2024 Dec 13 (pp. 1-6). IEEE.
- [6]. Mishra H, Mishra D. Artificial intelligence and machine learning in agriculture: Transforming farming systems. Res. Trends Agric. Sci. 2023;1:1-6.
- [7]. Himesh S, Rao EP, Gouda KC, Ramesh KV, Rakesh V, Mohapatra GN, Rao BK, Sahoo SK, Ajilesh P. Digital revolution and Big Data: a new revolution in agriculture. CABI Reviews. 2018 Aug 22(2018):1-7.
- [8]. Adigun GO, AJANI YA, ADEFILA EK, Rabiu N. Transforming Agriculture with Artificial Intelligence: The Role of Libraries in Meeting the Challenges of Food Security and Efficiency in the Fourth Industrial Revolution. University of Ibadan Journal of Library and Information Science. 2023;6(1).
- [9]. Satpathy B. Digital transformation for sustainable agriculture: a progressive method for smallholder farmers. Current Science. 2022 Dec 25;123(12):1436-40.
- [10]. Singh A, Mehrotra R, Rajput VD, Dmitriev P, Singh AK, Kumar P, Tomar RS, Singh O, Singh AK. Geoinformatics, artificial intelligence, sensor technology, big data: emerging modern tools for sustainable agriculture. Sustainable agriculture systems and technologies. 2022 Mar 28:295-313.
- [11]. Gupta WH, Roy R, Hangshing L, Lairenjam C, Kaur U, Dey S, Moursy AR, Kumar11 KY. Transforming Agriculture: Harnessing Modern Intelligent Tools and Cybernetics for Innovation.
- [12]. Yi D, Jun L, Haodic G, Xing Z, Lie Y, Maidin SS, Ishak WH, Wider W. Transforming Agriculture: An Insight into Decision Support Systems in Precision Farming. Journal of Applied Data Sciences. 2024 Oct 15;5(4):1614-24.

- [13]. Khan N, Babar MA. Innovations in precision agriculture and smart farming: Emerging technologies driving agricultural transformation. Innovation and Emerging Technologies. 2024 Jan 9;11:2430004.
- [14]. Behera K, Babbar A, Vyshnavi RG, Yankanchi S, Verma B, Patel T, Jaiswal S. Intelligent technologies and their transformative role in modern agriculture: A comparative approach. Environment Conservation Journal. 2024 Apr 22;25(3):870-80.
- [15]. Akbulut MU, Çengel ŞE, Akbulut M. AI in Agriculture & Food Science: Transforming Sustainability and Productivity. Artificial intelligence (AI). 2025 Aug 26;10(12):18.
- [16]. Gul D, Banday RU. Transforming crop management through advanced AI and machine learning: Insights into innovative strategies for sustainable agriculture. AI, Computer Science and Robotics Technology. 2024 Oct 3.
- [17]. Ray PP. AI-assisted sustainable farming: Harnessing the power of ChatGPT in modern agricultural sciences and technology. ACS Agricultural Science & Technology. 2023 Jun 7;3(6):460-2.
- [18]. Mohammed S, Singh A, Kaur H. Transforming Agriculture with Cloud Computing: Data Processing and Analysis Innovations. In2025 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE) 2025 Jan 16 (pp. 1-8). IEEE.
- [19]. Yoosefzadeh-Najafabadi M. Merging traditional practices and modern technology through computational plant breeding. Plant Physiology. 2025 Sep;199(1):kiaf355.
- [20]. Abashidze G. Digital agriculture-technological means and possibilities of digital transformation of agriculture. Economic Science for Rural Development. 2023 Jan 1;10(56):13-9.
- [21]. Chandio AA, Ozdemir D, Gokmenoglu KK, Usman M, Jiang Y. Digital agriculture for sustainable development in China: The promise of computerization. Technology in Society. 2024 Mar 1;76:102479.
- [22]. Fuentes-Peñailillo F, Gutter K, Vega R, Silva GC. Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. Journal of Sensor and Actuator Networks. 2024 Jul 8;13(4):39.

- [23]. Ghergan OC, Drăghicescu D, Iosim I, Necșa PA. The role of computer vision in sustainable agriculture. Agricultural Management/Lucrari Stiintifice Seria I, Management Agricol. 2021 May 1;23(2).
- [24]. Rani MU, Kamalesh S. Energy efficient fault tolerant topology scheme for precision agriculture using wireless sensor network. IEEE. 2014; 1208-1211.
- [25]. Kim Y, Evans, R.G. and Iversen, W.M. Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE transactions on instrumentation and measurement. 2008; 57(7):1379-1387.
- [26]. Kim Y, Evans R. Software design for wireless sensor-based site-specific irrigation. Computers and Electronics in Agriculture. 2009; 66(2):159-165.
- [27]. Gang LL. Design of greenhouse environment monitoring and controlling system based on bluetooth technology. Transactions of the Chinese Society for Agricultural Machinery. 2006; 10:97-100.
- [28]. Mohapatra AG, Lenka SK. Neural network pattern classification and weather dependent fuzzy logic model for irrigation control in WSN based precision agriculture. Procedia Computer Science. 2016; 78:499-506
- [29]. Gutiérrez J, Villa-Medina JF, Nieto-Garibay A, Porta-Gándara MÁ. Automated irrigation system using a wireless sensor network and GPRS module. IEEE Transactions on Instrumentation and Measurement. 2013; 63(1):166-176.
- [30]. Ilie-Ablachim D, Pătru GC, Florea IM, Rosne D. Monitoring device for culture substrate growth parameters for precision agriculture: Acronym: MoniSen. 2016; 1-7.
- [31]. Llaria A, Terrasson G, Arregui H, Hacala A. Geolocation and monitoring platform for extensive farming in mountain pastures. 2015; 2420-2425.
- [32]. Terrasson G, Llaria A, Marra A, Voaden, S. Accelerometer based solution for precision livestock farming: Geolocation enhancement and animal activity identification, IOP Publishing, 2016; 012004.
- [33]. Carolan M. Acting like an algorithm: Digital farming platforms and the trajectories they (need not) lock-in. In: Desa G, Jia X. (eds.) Social innovation and sustainability transition. Springer Nature Switzerland. 2020; 107–119.

- [34]. Nautiyal CT, Rana US, Kumar R. classification of noisy English alphabets using neural network. In 2016 2nd International Conference on Next Generation Computing Technologies (NGCT). IEEE. 2016; 704-709.
- [35]. Ruiz-Garcia L, Lunadei L. The role of RFID in agriculture: Applications, limitations and challenges. Computers and Electronics in Agriculture. 2011;79(1):42-50.
- [36]. Alekseeva S, Volkova G, Sukhanova O, Fudina E. Digital transformation of agricultural industrial complex in the implementation of its development strategy.
- [37]. SS VC, Hareendran A, Albaaji GF. Precision farming for sustainability: An agricultural intelligence model. Computers and Electronics in Agriculture. 2024 Nov 1;226:109386.
- [38]. Liang D, Tang W, Fu Y. Sustainable modern agricultural technology assessment by a multistakeholder transdisciplinary approach. IEEE Transactions on Engineering Management. 2021 Aug 3;70(3):1061-75.
- [39]. Saryam M, Sharma K, Pandey R, Pandre BP. AI-Driven Agriculture: Transforming the Future of Farming. Smart Agriculture: Merging Innovation, Efficiency and Sustainability: Artificial Intelligence, Smart Farming, Sustainable Agriculture, Internet of Things. 2025 Jun 21:144.
- [40]. Devarajan Y. Investigation of Emerging Technologies in Agriculture: An In-depth Look at Smart Farming, Nano-agriculture, AI, and Big Data. Journal of Biosystems Engineering. 2025 Apr 4:1-23.
- [41]. Brini M. Introduction to Data Science in Agriculture and Natural Resource Management. InHarnessing Data Science for Sustainable Agriculture and Natural Resource Management 2024 Dec 20 (pp. 1-23). Singapore: Springer Nature Singapore.
- [42]. Abiri R, Rizan N, Balasundram SK, Shahbazi AB, Abdul-Hamid H. Application of digital technologies for ensuring agricultural productivity. Heliyon. 2023 Dec 1;9(12).
- [43]. Sarvakar K, Thakkar M. Different vegetation indices measurement using computer vision. InApplications of computer vision and drone technology in agriculture 4.0 2024 Mar 19 (pp. 133-163). Singapore: Springer Nature Singapore.
- [44]. Shrivastav V, Yadav M, Sharma A, Kumar D, Sharma S, Chauhan AS. IoT and IoE transformations in precision farming agriculture: sensor based monitoring, automated

- irrigation and livestock monitoring. In2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS) 2024 Feb 24 (pp. 1-14). IEEE.
- [45]. Reddy R. Innovations in agricultural machinery: Assessing the impact of advanced technologies on farm efficiency. Journal of Artificial Intelligence and Big Data. 2022 Oct 30;2(1):10-31586.
- [46]. Agarwal R, Bhardwaj I, Sharma AK, Sanghi A, Agarwal G. Innovations in Agri-Tech: A review of artificial intelligence applications and challenges in modern agriculture. In2024 Second International Conference on Advanced Computing & Communication Technologies (ICACCTech) 2024 Nov 16 (pp. 599-604). IEEE.